Strategic Waterways

A tool to categorise and prioritise waterway investments

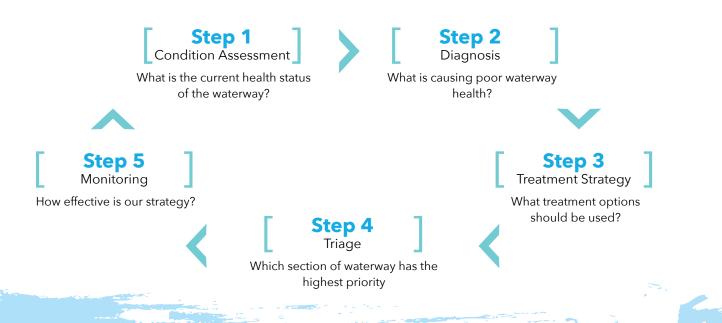
Contents

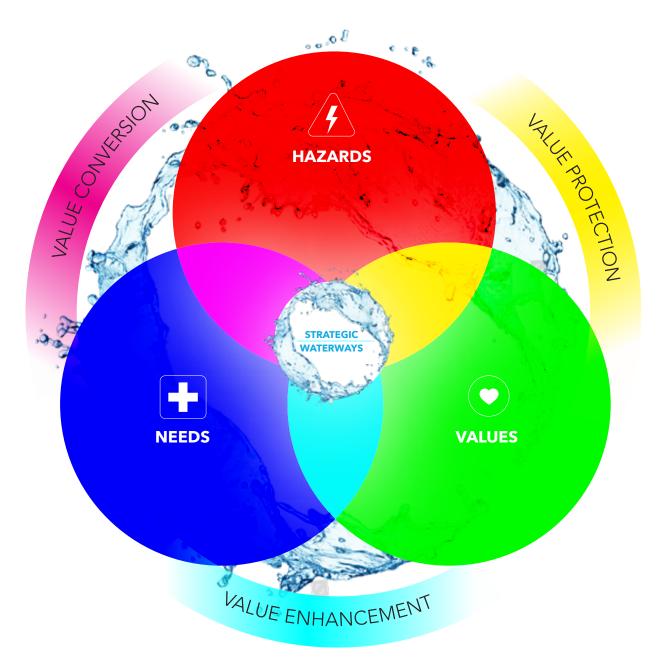
	Introduction	4
	Why we need to think differently	6
	Values	7
N	Hazards	10
Et.	Needs	12
	Risk	14
ALL I	Opportunity	16
the state	Gamechangers	18
M. L. M.	Step 1a Hazard Assessment	20
4	Step 1b Value Assessment	21
No.	Step 1c Need Assessment	22
	Step 2 Catchment Diagnosis	23
	Step 3 Waterway Treatment Options	26
	Waterway Value Decline	27
	Treatment Options	28 - 39
	Waterway Treatment Plan	40
	Step 4 Waterway prioritisation and triage	42
	Step 5 Monitoring of strategy effectiveness	44

Introduction | What is Strategic Waterways?

Strategic Waterways is a support tool that helps waterway managers assess their local catchments, understand risks and manage priorities accordingly. The excel based tool is available for download from <u>waterbydesign.com.au/resources</u>

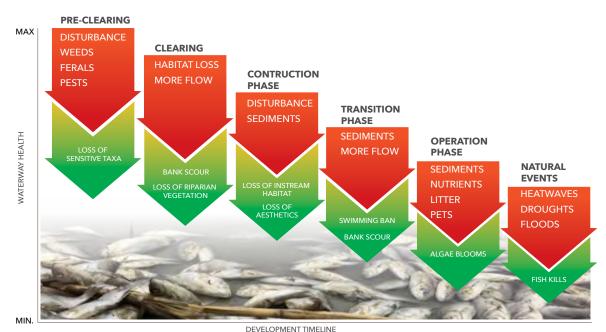
Why is it needed?

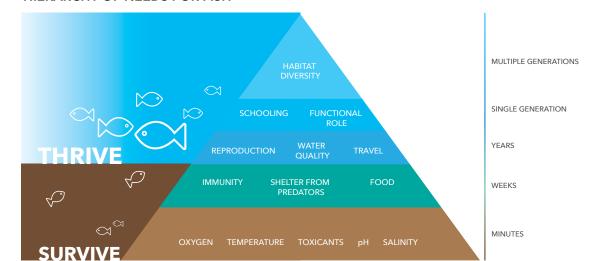

Waterway management is complex. There are often many competing objectives and it is very difficult for council and private industry to find the best solutions. Furthermore the current Water Sensitive Urban Design (WSUD) policy in Queensland focuses solely on sediment and nutrient reduction. It applies 'one-size-fits all' to complex issues like waterway management. Therefore, new tools are needed to adequately address the risks and benefits to waterways.


How does it work?

Strategic Waterways uses a colour coding system to represent complex interactions between hazards, values and needs. These three dimensions form a diagnosis of the catchment condition and can assist in planning potential treatment strategies and recovery pathways for the waterway.

Strategic Waterways follows a 5-step process similar to the medical model as outlined below:




As waterway managers our two main goals are to protect and enhance waterway values. With this visualisation tool, users are able to assess risk and opportunity and create a balanced portfolio of catchment and waterway projects to maximise the return on investment.

The tool uses a colour coding system and spectrum analysis to help diagnose what the waterway actually needs:

- Red indicates how hazardous the catchment is
- Where a hazard overlaps with a value it forms a risk (yellow)
- Green indicates how valued the catchment / waterway is
- Where a value overlaps with a need it forms an opportunity (cyan)
- Blue indicates where there is the opportunity to recover or enhance value
- Where a hazard can fulfil a need it forms a gamechanger (magenta)
- The brightness score indicates importance of this waterway/catchment

Why we need to think differently

HIERARCHY OF NEEDS FOR FISH

HIERARCHY OF WATER NEEDS (FOR PEOPLE)

THRIVE

INSPIRATION SPIRITUAL

M PROTECTION COMMUNAL LIVING IRRIGATION FISHERIES

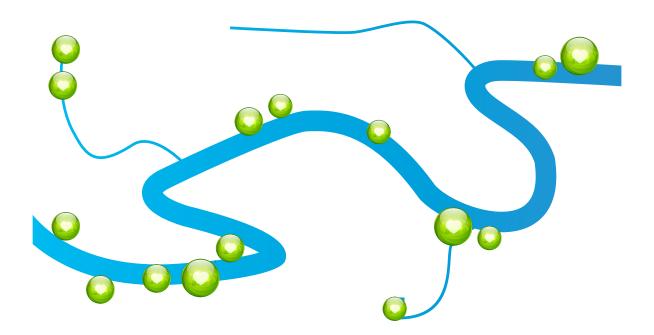
DISEASE PREVENTION FLOOD PROTECTION DRINKING WATER FOOD PRODUCTION ECOSYSTEM SURVIVAL

COMMUNITY NEEDS

ASPIRATIONAL NEEDS

RECREATION NEEDS

SAFETY NEEDS


Values | vary across the catchment

From the clean water we drink, the rivers we swim in and the diverse marine life in the Great Barrier Reef, every living thing relies on healthy waterways for survival. We often take waterway health for granted, so it is important to understand their values.

Some parts of waterways are of high value because they are where plants and animals flourish. Other parts can be considered low value, such as areas where the waterway has been neglected by the local community (e.g. stormwater channels in industrial areas).

To manage these values, we need to take inventory of the waterways within the catchment. These include lakes, wetlands, rivers, ponds, estuaries and the wider ocean. We can then prioritise high and low value areas to improve their health or protect them from external threats like pollution. We also need to understand the processes that preserve their function.

We then allocate resources for their protection, prioritised by the parts of the waterway that require the most attention to the least. Strategic Waterways assists managers in understanding the values of each waterway so they can adequately preserve these catchment's values.

Some common waterway values

ENVIRONMENTAL VALUES	SOCIAL VALUES	ECONOMIC VALUES
Healthy ecosystems Habitat	Cultural values	Commercial fishing
Food webs	Recreational use Recreational fishing	Drinking water Irrigation water
Biodiversity	Aesthetics	Tourism
Ecosystem services	Relaxation	Transportation
Water for life	Spiritual values	Adjacent land value

COMMERCIAL FISHING

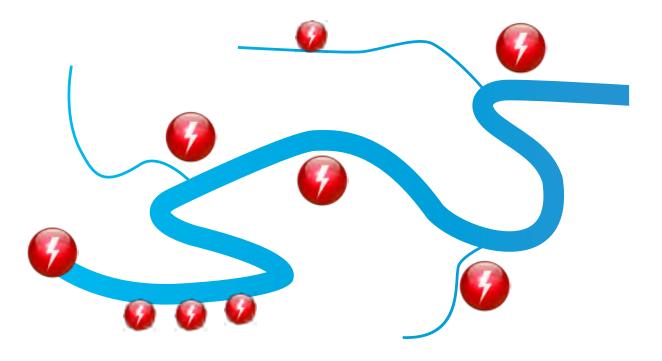
The Values we are trying to preserve

We need to protect waterway values as they support all life on earth

WILD LIFE

CLEAN WATER

RECREATION


HABITAT

RECREATIONAL FISHING

Hazards | vary across the catchment

Every year we invest millions of dollars in treating water pollution. We build, operate and maintain expensive wastewater treatment systems and for every new subdivision that is built, the polluted runoff from the roads, roofs and carparks is filtered through bioretention systems, gross pollutant traps or constructed wetlands. The stormwater industry is able to manage sediment and nutrients, but these are just some of the hazards threatening our waterways. In order to protect these vital ecosystems, we need to understand a wide range of potential threats, such as oxygen depletion and high temperatures, which can lead to mass fish kills.

Research suggests 90% of pollution flows from just 10% of the catchment, indicating we need to focus on these critical hotspots (McClain et al, 2003). We also need to monitor long-term threats like temperature increases and climate change. Strategic Waterways helps managers prioritise waterway hazards and develop an action plan to improve and preserve the catchment's health.

Some common waterway hazards

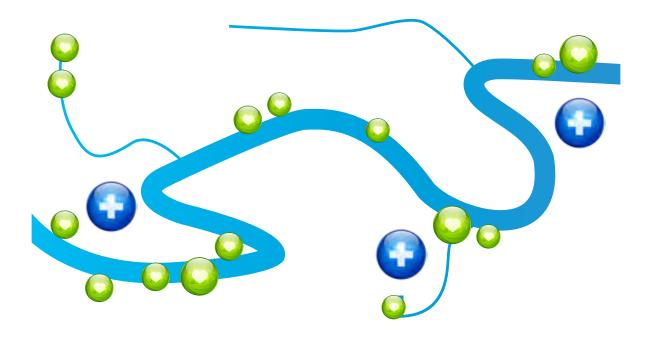
POLLUTANTS / TOXICITY	FLOW CHANGE	DISTURBANCE
Sediment	Urbanisation can cause:	Clearing of riparian areas
Phosphorus and nitrogen	Excessive flow increases	Piping of flowpaths
Gross pollutants	Concentration of flow	Weeds and pest species
Plastics	Redirection of flow	Pets and livestock
Heavy metals	Too much flow	Unintended public acces
Hydrocarbons	Too little flow	Motor bikes and SUVs
Pesticides and herbicides	Reduced groundwater	Bush fires
Physical parameters	infiltration	Boat wake

GROSS POLLUTANTS/ LITTER

FLOOD/ SEDIMENT

The Hazards we are trying to manage

We need to protect and manage our waterways from harm to ensure they continue to function NITROGEN & PHOSPRORUS


POINT SOURCE/ HEATWAVE

> LAND CLEARING/ DISPERSIVE SOIL/DROUGHT

Needs | vary across the catchment

Australia has been modifying and polluting waterways for over 200 years and extensive work is needed to improve their health. Urbanisation has also increased demand for recreational parks and waterways, threatening the natural processes of the ecosystem. We need to manage these demands with the needs of the ecosystem.

Similar to understanding the values of catchments, we need to understand the waterways' needs to identify projects that will provide short and long-term benefits. In particular, we need to be on the lookout for catalyst projects that will spur on further waterway value increases (e.g. community education, empowerment and action).

Some common waterway needs

ENVIRONMENTAL	SOCIAL	ECONOMIC
Revegetation	Access to creek	Potable water offset
Habitat restoration	Connection with nature	Establishing eco business
Habitat reconnection	Microclimate cooling	Lower maintenance cost
Stormwater disconnection	Recreation space	Improve fish stocks
Fish barrier removal	Education	River land value

ALTERNATIVE WATER SUPPLY

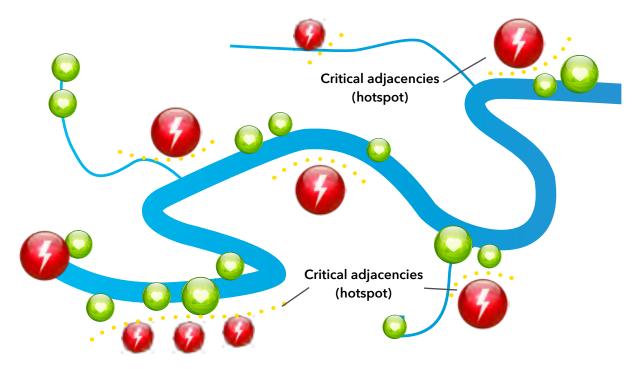
COMMUNITY ACCESS

NESTING SITES

RECREATION

Waterway needs we are trying to meet

We need to look for ways to improve the waterway so that it can help us meet our own needs



Why shouldn't risk management vary across the catchment?

Risk management and mitigation are an important part of waterway management and should always be front of mind. Waterway risks will vary considerably across the catchment and our mitigation strategies should take this into account.

Risk and hazard are distinct from one another, and it is only when a hazard overlaps with an environmental, social or economic value that it forms a risk. For example, where an area of high hazard (e.g. a construction site) is adjacent to a high value area (e.g. a fishery) it forms an area of high risk or a critical vulnerability. These are known as 'hotspot' sites.

Risk management can be classified into risk avoidance, mitigation or repair (offset).

Some common risk management strategies

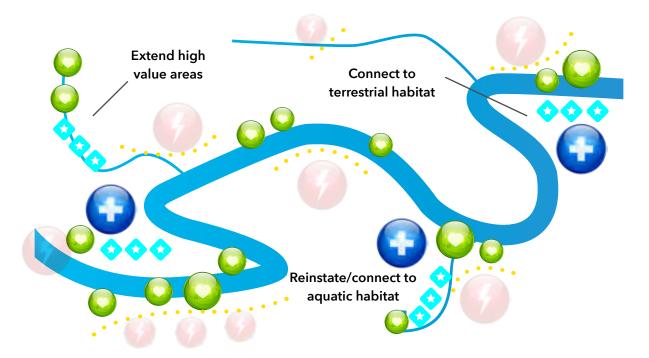

AVOIDANCE

- MITIGATION
- Land management Riparian fencing 'At source' control Green roofs Permeable paving Rainwater harvesting

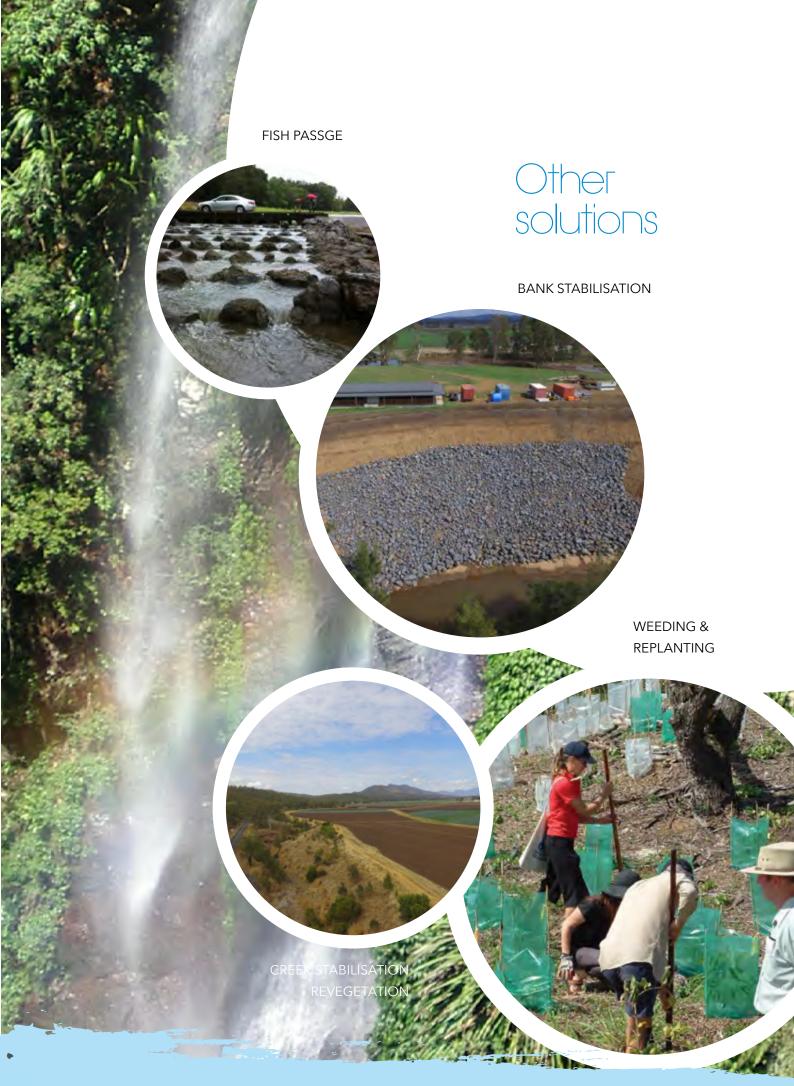
Sediment basins Constructed wetlands Bioretention basins Gross pollutant traps Detention basins Flood control dams

REPAIR (OFFSET)

Creek sediment removal Bank stabilisation Weed eradication Pest eradication Litter removal Rehabilitation


STRATEGIC WATERWAYS

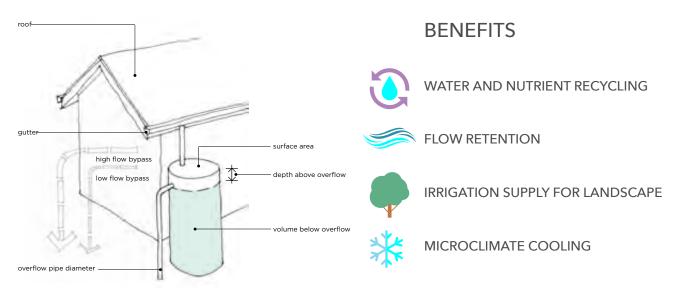
Why should management just focus on risk?


Sometimes waterway managers focus on hazard mitigation rather than the potential to create new values. Similarly, catchment and waterway works are usually reactive measures that treat symptoms rather than the source of the problem. These approaches fail to recognise the potential to improve the environmental, social and economic value of the waterway.

Where an area of high need adjoins an area of high value this forms a critical adjacency, which becomes an opportunity to create value beyond the stand alone project. By finding the synergies within the catchment, we can invest in solving a problem and creating long term value simultaneously.

Some common opportunities

ENVIRONMENTAL	SOCIAL	ECONOMIC
Fish passage	Improve amenity	Increased tourism access
Habitat reinstatement	Active and passive	Increased fishing revenue
Rehabilitation	recreation	Non-potable water supply
Reduce excess flow	Education and appreciation	Reduced lifecycle costs
Reinstate flushing	Stewardship programs	Circular economy



Is it possible to turn a hazard into something that fulfils a community or ecological need?

Where an area of high hazard intersects an area of high need it may be possible to find a solution that neatly addresses the hazard and simultaneously fulfils a community and ecological need. For example, stormwater harvesting converts a hazard (too much high-nutrient water) into a need (it provides an alternative water supply, among other benefits).

Waterway managers can find 'gamechangers' by assessing catchments for unique opportunities like the ones listed below.

Rainwater tanks are a perfect example of gamechanger technology.

Some common gamechanger strategies

HAZARD	GAMECHANGER 🗕	BENEFIT
Excess flow Excess flow Excess flow Excess flow Nutrient laden water Heatwaves Sediment laden floodwater	Rainwater Tank Infiltration Permeable paving Passive irrigation Passive irrigation Passive irrigation Floodplain wetlands	Non-potable water GW replenishment Reduced pipes Non-potable water Tree vitality Cooler microclimate Soil retention

The solution suite

The first step in the Strategic Waterways approach is to assess the current (and proposed) condition of the catchment. A three-part questionnaire is provided below as a starting point.

Waterway managers can modify this questionnaire based on local knowledge and priorities. We would encourage organisations to assemble a diverse range of ecology and waterway health experts to conduct a full hazard assessment and calculate appropriate weightings for each item below. Some of the answers may be drawn from <u>waterway health report cards</u> or Water Quality Improvement Plans. Hazard ratings can also be found from flood maps, soil maps, contaminated land registers and aerial photos.

The Davidson Street Project has been used as an example of scoring. For more information, refer to **page 32.**

Theme	Hazard Intensity	Score	Available
Water	Has the catchment been cleared or will it be?	8	10
Maintain / improve	Are fragile soils present? Is erosion likely?	6	10
water quality	Are pollution sources (nutrients and other) present?		10
	Are litter sources (e.g. fast food, schools) present?	6	10
	Flow increases have occurred or are likely?	6	10
	Are large impervious areas present or likely?	7	10
	Is flooding present?	8	10
Environment	Has riparian clearing occurred or will it?	1	10
Protect and restore	Does the riparian edge suffer disturbance or will it?	8	10
waterway health	Are weeds present?	8	10
	Are exotic fish / pests present?	5	10
	Have habitat niches been removed or likely?	8	10
	Are there fish barriers present or likely?	8	10
Community	Are safety hazards present or likely?	8	10
Enhance community	Is poor aesthetics an issue?	2	10
quality of life	Is lack of green space an issue?		10
	Is the area unwelcoming or unfriendly?	0	10
	No community access to waterway?	2	10
	Is the community apathetic?	4	10
	Is there inequality in community?	0	10
Economy	Is the WSUD strategy expensive compared to average?	1	10
Maintain/improve	Is land being underutilised?		10
the economic benefit	Does proposal have short life cycle / low durability (<25years)?	3	10
of waterways	Is proposal ecologically unsustainable?	0	10
	Does proposal represent low Triple Bottom Line value?	4	10

What are the existing & proposed hazards in the catchment / waterway? (0=best case 10=worst case)

0 to 10

"Red" hazard intensity

109 250

Download the excel tool from <u>waterbydesign.com.au/download/strategic-waterways-tool</u>

The existing values for a catchment can be found from sources such as:

- High Ecological Value Waterways and Wetlands Mapping (DES)
- Matters of State Environmental Significance (MSES) Mapping
- The Blue Maps (GBRMPA)
- Remnant Ecosystem Mapping
- Threatened Species Registers
- Cultural Herritage Mapping
- Walking the Landscape Approach (DES)
- River Styles Assessments
- Ecosystem Services Framework (HLW)

What are the existing values in the catchment / waterway? (0=worst case 10=best case)

Theme	Value Intensity	Score	Available
Water	Does waterway inflow need to be sediment-free?	7	10
	Does waterway inflow need to be nutrient-free?	7	10
	Is local flood conveyance a key requirement?	7	10
	Is provision of low cost water of high importance?	4	10
	Are there important groundwater resources?	0	10
Environment	Natural lakes and / or wetlands are present?	0	10
	Flow paths & ephemeral creeks are present?	10	10
	Creeks and rivers are present?	10	10
	Aquatic structure (incl food & shelter) are present?	5	10
	Terrestrial structure (incl food & shelter) are present?	5	10
	Waterway connectivity is present?	5	10
	Functional ecosystems are present?	5	10
Community	s community Access to creek is important?		10
	Is community Appreciation of creek is important?	10	10
	Is community Relaxation near creek is important?	10	10
	Is community Recreation near creek is important?	10	10
	Is Community Interaction with waterway is important?	10	10
	Is community Education of waterway values is important?	10	10
	Is inspiring and fostering community action is important?	10	10
Economy	Is commercial and recreational fishing important?	4	10
	Is recreation and tourism locally important?	2	10
	Is land value locally high?	8	10
	Does site have long term asset life (<25years)?	6	10
	Does site have low maintenance needs?	9	10
	Does site have high triple bottom line value?	7	10

0 to 10

"Green" value intensity

171 250

Because waterway management is often reactive, many key waterway needs can go unrecognised. However, consultations with ecologists, landscape managers, planners, economists and engineers can determine what needs are of highest priority.

Information can be sourced from waterway health report cards, aerial photos and land zoning maps.

Available Theme **Need Intensity** Score Water Is there high max temperatures require microclimate cooling? 2 10 Are there sports fields, ovals or gardens requiring irrigation? 6 10 Is non-potable water required for home use? 2 10 Does the groundwater reserves need to be replenished? 1 10 Is the riparian area is disconected and require watering? 10 10 Environment Is there potential to create new terrestrial habitat adjacent to creek? 10 10 Is there potential to link terrestrial habitat to creek? 10 10 10 Is there potential to create new aquatic habitat? 10 Is there potential to link aquatic habitat? 10 10 Community Does general waterwiseness need to be improved? 10 10 Does connection with creek need to be improved? 10 10 Is Indigenous & non-indigenous history represented? 10 10 Is a community facility / park in need of attractive WSUD? 10 10 Are care facilities nearby and in need of water features? 10 10 Can WSUD supply a nearby school with learning opportunities? 10 10 High population centres nearby in need of green assets? 10 10 Can links between waterway and cycleway be made? 10 10 Are there sports fields close by in need of stormwater harvest? 5 10 Is aesthetic amenity important for site? 10 10 Economy 2 10 Are there waste water reduction (via reuse) opportunities? Are there opportunities to reduce demand on potable water? 2 10 Can we reduce catchment toxicity and improve circular economy? 2 10 Can we improve potential TBL value for land? 6 10 Are we providing highest value use of water? 2 10 Do we provide lowest running costs? 10 10

What is the potential to recover or enhance waterway / site value? (0=worst case 10=best case)

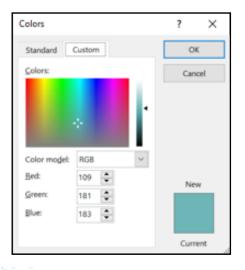
"Blue" need intensity 183 250

Step 2 | Catchment Diagnosis

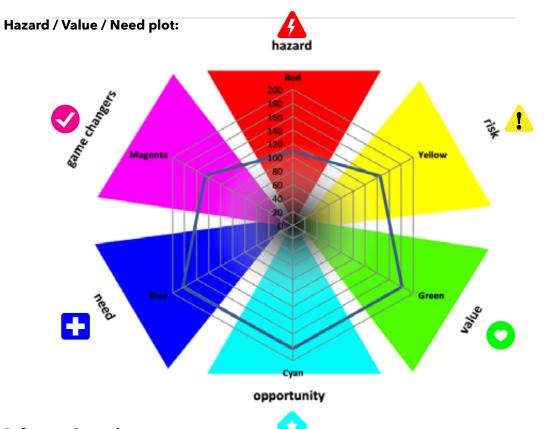
After a thorough assessment of the catchment and waterway we can accurately determine its needs. For example, does waterway value need to be preserved or is hazard minimisation or creating new value a bigger priority? Often catchments will require several different strategies to achieve the best outcome and return on investment.

Strategic Waterways uses the 'RGB' system of combining colours to diagnose a given waterway. Note that the secondary colour (e.g. Yellow) score is the average of the adjacent colours (Red and Green). The brightness score is the average of all values (Red, Green and Blue) and indicates the overall importance of the waterway. This helps waterway managers decide which waterways to prioritise first.

Condition assessment score:

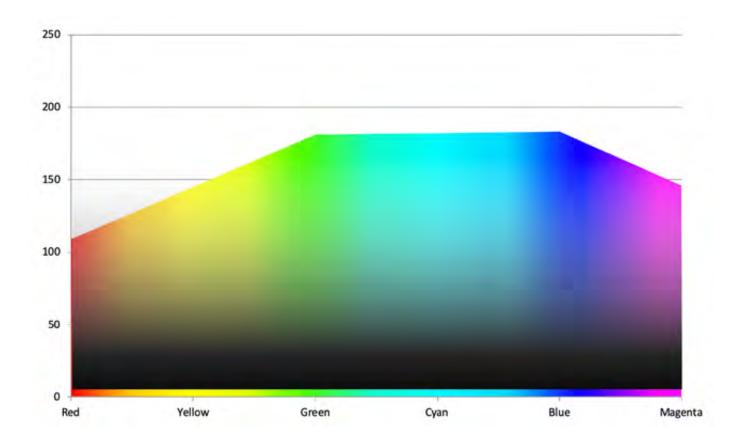

Catchment diagnosis:

Combined Colour This diagnosis produced a dull cyan hue indicating a moderate amount of waterway value and moderate opportunity to create new value.


How do we calculate a combined colour?

Combined colours can be calculated in most Microsoft applications by choosing > more colours > custom

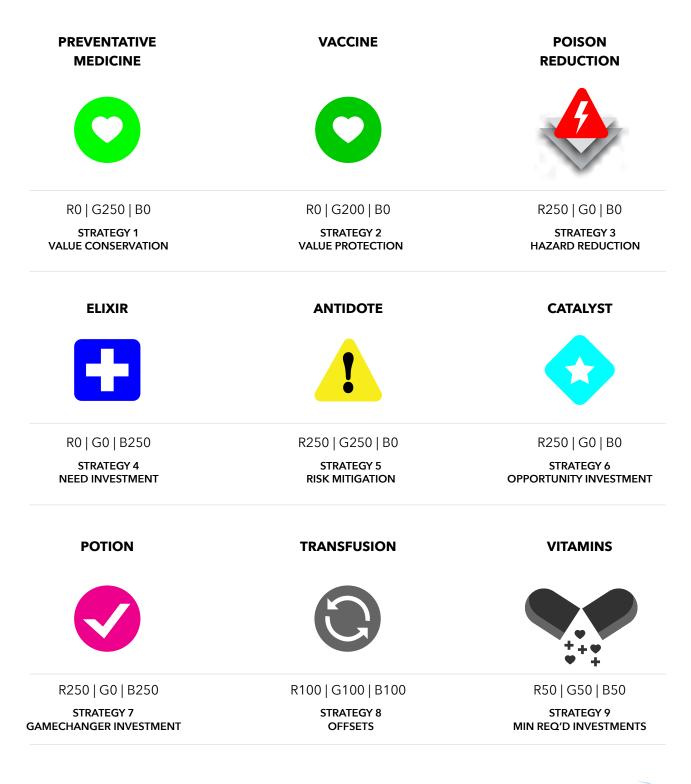
or using this online
> RGB colour generator


Step 2 | Catchment Diagnosis

Reference Scenarios:

Hazard Exposure	Waterway Condition	Recovery Potential	Combined Co	olour	Category	Triage Strategy
250	0	0	Red		Hazard	Correct existing hazards
250	250	0	Yellow		Risk	Reject new hazards
0	250	0	Green	\bigcirc	Value	Perfect value condition
0	250	250	Cyan		Opportunity	Reconnect value
0	0	250	Blue	+	Need	Resurrect value
250	0	250	Magenta		Gamechanger	Respect value
250	250	250	White		Bright	Protect high value
150	150	150	Light Grey	\bigcirc	Light	Accept current value
100	100	100	Grey	\bigcirc	Neutral	Redirect investment
50	50	50	Charcoal	\bigcirc	Dark	Redirect investment
0	0	0	Black	\bigcirc	Black	Redirect investment

The following plots help to visualise the distribution hazards, values and needs for a given catchment.


Spectrum Analysis

Treatment Strategy How to invest		Policy Setting	
Poison reduction	Projects to reduce key hazard sources	Redirect offset investment here	
Vaccine + Antidote	Projects to mitiogate risk hotspots	No net loss of value / no offsets	
Vaccine	Conservation of waterway value	No net loss of value	
Catalyst	Projects that catalyse value improvement	Redirect offset investment here	
Elixir	Projects that fulfil a waterway need	Redirect offset investment here	
Gamechanger	Projects that transform hazard into value	Redirect offset investment here	
Vaccine	Candidate to receive additional funding	No net loss of value	
Antidote	Business as usual / standard practice	Standard pollutant load reductions	
Transfusion + Vitamins	Candidate to donate funding elsewhere	Contribute to offsets scheme	
Transfusion + Vitamins	Candidate to donate funding elsewhere	Contribute to offsets scheme	
Transfusion + Vitamins	Candidate to donate funding elsewhere	Contribute to offsets scheme	

Step 3 | Waterway Treatment Options

Once a category is known for a given catchment we can assign an ideal treatment option. There are nine key waterway treatment strategies available to waterway managers as listed below. The strategies range from hazard and risk focus to value protection and creation focus.

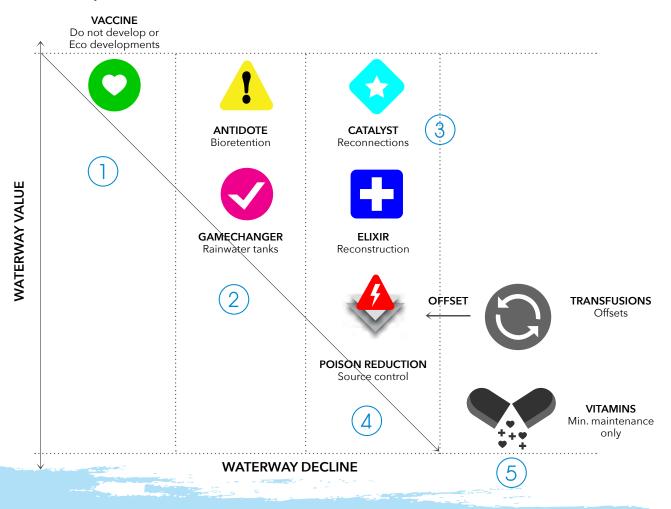
Each strategy is likened to a medicinal treatment approach for clear identification.

Waterway Value Decline When should each treatment option be triggered?

3

Δ

5


The strategy we select needs to match the catchment and waterway condition, otherwise we risk wasting limited resources. For example, the extra money required to build an eco-development would be wasted on a waterway once it has declined to a certain point. These funds could be better spent on a higher value catchment.

As the level of hazard increases it is now appropriate to look at hazard (i.e. poison) reduction, risk mitigation (i.e. antidote) and hazard conversion (i.e. gamechanger).

It is only once the waterway value has decreased somewhat that there is more opportunity to restore value (i.e. catalysts and elixirs) and achieve an ecological return on investment. Where there is a linkage to an area of high value a catalyst should be applied. Where there is no linkage, but a significant benefit could be realised, an elixir should be applied.

In resilience science there is a tipping point where the value has declined so much that it is no longer viable to return it to its former value because there will be less biodiversity. At this point, focus should shift from protection and recovery projects to hazard reduction.

If there is not a high hazard, value or need within the catchment, investment money should be redirected to higher priority catchments as this is more appropriate and beneficial. However, there should always be a small portion of funding available to service every waterway's critical needs.

'R' INTENSITY	'G' INTENSITY	'B' INTENSITY	'RGB' INTENSITY		
HAZARD EXPOSURE	WATERWAY CONDITION	RECOVERY POTENTIAL	COMBINED COLOUR		
0	250	0	GREEN		
Management Strategy #1	: Value Con	Value Conservation			
Strategy Aims:	To maintai	n existing values,			
	Manage g	Manage generic threats,			
	Protect fro	Protect from future development,			
	Safeguard	Safeguard perceived value and justify protections,			
	Celebrate	Celebrate intrinsic value.			
Qualifying Criteria:	Waterway	s and catchments are in pri	stine condition.		
Site Profile:	"Eden"				
Examples:	Daintree F	ainforest, Noosa River.			
How to invest:	Fund value	e maintenance activities.			
Policy Setting:	Do not de	velop.			
Remedy:	"Preventat	ive Medicine"	0		

Preventative medicine - Prevent disturbance in the first instance Prevention is often cited as the best cure. One option to preserve waterway value at the original (maximum) level is to prohibit development to occur at all. This option is best applied in pristine catchments in the local area. Funding should also be allocated to protect these catchments from threats such as climate change, invasive species and fire.

These areas can also be used as inspiration for the local community to build on conservation goals. Investment in programs such as **Environmental Education** (to foster environmental stewardship) and **Access for Appreciation** (evidence a waterway is appreciated in its natural state) will see long-term rewards.

'R' INTENSITY	'G' INTENSITY	'B' INTENSITY	'RGB' INTENSITY		
HAZARD EXPOSURE	WATERWAY CONDITION				
0	200	0	GREEN		
Management Strategy #2	: Value Protec	Value Protection			
Strategy Aims:	To maintain	To maintain existing waterway values,			
	Manage ger	Manage generic threats,			
	Insulate wate	Insulate waterways from development threats.			
Qualifying Criteria:	Waterways h	nave high value scores.			
	Small portio	Small portions of the catchment may already be cleared of			
	vegetation a	nd have development pote	ential.		
Site Profile:	"The Shire"				
Examples:	Gold Coast I	Hinterland (e.g. Currumbin	Ecovillage).		
Policy Setting:	Neutral or B	eneficial Effect.			
Remedy: "Vaccine"			\bigcirc		

Vaccines - Change the way development occurs

A vaccine is required to maintain waterway value while permitting development. This should be considered the ultimate goal for all waterways and relies on buildings and roads that replicate natural conditions as best as possible.

While this is a long-term goal, green roofs, permeable roads and rainwater tanks are helping make the step towards sustainable development. Examples of these low impact designs are the Currumbin Eco Village and the Noosa Flexi Learning Centre.

"Eden"

"the Shire" (Photo: Sheila Thomson)

'R' INTENSITY	'G' INTENSITY	'B' INTENSITY	'RGB' INTENSITY	
HAZARD EXPOSURE	WATERWAY CONDITION	RECOVERY POTENTIAL	COMBINED COLOUR	
250	0	0	RED	
Management Strateg	Management Strategy #3: Hazard Reduction			
Strategy Aims:	To control hazards at their source,			
	To reduce pollutant toxicity and prevalence.			
Qualifying Criteria:	Qualifying Criteria: Catchments with high pollutant loads.		5.	
Site Profile:	"A catchment detox"			
Examples:	Examples: Industrial areas such as Pinkenba, Port of Brisbane, Rock		t of Brisbane, Rocklea,	
	Wacol, Arc	Wacol, Archerfield, Slacks Creek and Underwood.		
How to invest:	Target key hazard types and sources.			
	Project can be funded with offsets finance.			
Policy Setting:	Policy Setting: Legislate against hazards creation.			
	Enforce m	inimum standards.		
Remedy:	"Poison re	"Poison reduction"		

Poisons - Reduce the toxicity of the catchment

Poison reduction programs rely on broadscale behaviour changes, such as elimination of pesticide, fertiliser, animal faeces and surfactants (from car washing) in stormwater runoff. Their focus can also be on reduced pollutant generation through erosion control (cover management) rather than sedimentation treatment. Their initiation can be via legal changes such as the single use plastic ban or via good environmental design such as fencing off waterways to prevent disturbance.

Types of Hazard Reduction:

Legislation - plastic bag bans, pesticide bans, minimum water quality standards

Proactive environmental design - design that prevent environmental hazards - riparian fencing, stock watering points, sustainable homes

Behaviour change initiatives - plastic straw disuse, reusable water bottles and coffee cups, clean up after dogs, wash car on lawn

Incentive schemes - container deposit schemes, green star schemes.

WATERWAY CONDITION	RECOVERY POTENTIAL	COMBINED COLOUR		
0	250	BLUE		
y #4: Need In	Need Investment			
To meet	To meet the immediate needs of the community and the			
local ec	local ecology.			
Create r	Create new naturalised waterways and establish wildlife refuges.			
Catchm	Catchments limited existing waterway value and a need for			
improve	improved waterway value.			
"The Bla	"The Blank Canvas"			
Mackay	Mackay's Cane Drains, Small Creek - Raceview.			
Use offs	Use offset money to fund value creation projects.			
Use stra	Use strategic plan to identify key opportunities.			
emedy: "Elixir"				
	CONDITION 0 y #4: Need In To meet local ecc Create r Catchm improve "The Bla Mackay" Use offs Use stra	CONDITION POTENTIAL 0 250 y #4: Need Investment To meet the immediate needs of the local ecology. Create new naturalised waterways ar Catchments limited existing waterway improved waterway value. The Blank Canvas" Mackay's Cane Drains, Small Creek - Use offset money to fund value creat Use strategic plan to identify key opp		

Elixirs - Enhance waterway value

Elixirs are management actions that can improve waterway value, such as bank stabilisation, restoration of fish connectivity as well as community stewardship projects that can help promote the active resilience of a waterway. A good source of funding for elixirs is via offsets (transfusions); which enable resource transfers to create the best outcome.

Cane Drain, Mackay

Management Strategy #4

Small Creek - Raceview

Case study - Small Creek- Raceview, Queensland

Ipswich City Council have been investing significant sums of money to re-naturalise a creek at Raceview, Qld.

The project fulfils several key habitat and community needs including:

- Removal of a concrete drain and replacement with a naturalised creek
- Treatment of stormwater via litter collection and nutrient filtration
- Extended habitat corridor up from Deebing Creek
- Reconnecting to indigenous heritage weaving circle / yarning circle
- Allowance for flooding / slows velocities allowing for settling and reduced scour
- Partly funded via offsets
- A co-design approach to inspire community ownership and long-term maintenance
- A bike path connecting to the local school encourages active transport

This project significantly increased the waterway value and showcases a 'resurrection' of an urban waterway returning towards its predevelopment condition.

waterbydesign.com.au/case-study/small-creek-ipswich-city-council

'R' INTENSITY	'G' INTENSITY	'B' INTENSITY	'RGB' INTENSITY	
HAZARD EXPOSURE	WATERWAY CONDITION	RECOVERY POTENTIAL	COMBINED COLOUR	
250	250	0	YELLOW	
Management Strategy #5	5: Risk Mitig	ation		
Strategy Aims:	To reduce	To reduce harm to waterways through hazard mitigation,		
	Reduce th	Reduce the duration and frequency of a hazardous event,		
Reduce proximity and connectivity of hazard to value			hazard to value.	
Qualifying Criteria:	Sites when	Sites where a hazard flows to an area of high value forming		
	a critical v	ulnerability.		
Site Profile:	"The Flash	"The Flash Point"		
Examples:	Bells Cree	Bells Creek, Mango Hill.		
How to invest:	Additiona	Additional funds for risk mitigation.		
Policy Setting:	Strategic p	Strategic plan to identify hotspots.		
	Do not pe	Do not permit offsets in areas of high value.		
	Enforce w	Enforce water quality standards.		
Remedy:	"Antidote"	"Antidote"		

Antidotes - Treat waterway pollution

The development industry in Queensland typically uses stormwater treatment (antidote) options, including Bioretention Basins and GPTs to manage waterway risks. While this technology is important, antidotes only slow the degradation of a waterway. Hazards must first be generated for them to be effective.

Quite often money can be saved on Antidote treatment solutions by first investing in pollutant source reduction (e.g. minimising ground disturbance and cover control) will lead to lower end of line sediment basin costs.

Management Strategy #5

Pristine waterways become polluted with construction sediment.

Water Quality Treatment Solutions

- Water wise street trees
- Rain gardens
- Bioretention basins
- Constructed wetlands
- Floating wetlands
- Gross pollutant traps
- Buffer strips
- Sediment basins
- High efficiency sediment basins

To improve Encourage	RECOVERY POTENTIAL 250 ity Investment e the value of the waterway e value restoration and exp		
Opportuni To improve Encourage	ity Investment e the value of the waterway	/,	
To improve Encourage	e the value of the waterway		
Encourage	-		
-	e value restoration and exp	ancion	
Improveva		on and expansion.	
Improve value reconnection and synergies.			
Waterways	Waterways must have a section with high value and		
opportuni	ty to expand or improve va	lue.	
"The Missing Link"			
Davidson	Davidson Street Project, Bancroft Weir, Barry's Weir.		
How to invest: Fund key catalyst projects.			
Redirect offset investment here.			
Use strate	Use strategic plan to identify key opportunities.		
Remove p	Remove potential project barriers.		
"Catalyst"	"Catalyst"		
-	Fund key o Redirect o Use strate Remove p	Fund key catalyst projects. Redirect offset investment here. Use strategic plan to identify key opp Remove potential project barriers.	

Catalyst - Enhance waterway value

Catalyst projects are management actions that can improve existing waterway value, such as bank stabilisation, restoration of fish connectivity as well as community stewardship projects that can help promote the active resilience of a waterway. A good source of funding for catalysts is via offsets (transfusions), which enable resource transfers to create the best outcome.

Case Study - Davidson Street Creek Revegetation, Newmarket

The Davidson Street project builds on an existing creek with high value and key community needs. The project acknowledges that further increase in waterway value is not likely without community backing. Therefore, its main aim is to reconnect the community to the creek, inspire community action and waterway stewardship.

Features of this project include:

- Weed management and revegetation
- Stormwater filtering and infiltration via a soakage basin
- A co-design approach to inspire community ownership and long-term maintenance
- Education initiatives inspire long term stewardship
- Increased amenities to capitalise on natural beauty
- Habitat enhancement

This project represents a moderate increase in short-term habitat value and aims to empower the local community toward long-term waterway stewardship.

waterbydesign.com.au/case-study/davidson-street-newmarket

'R' INTENSITY	'G' INTENSITY	'B' INTENSITY	'RGB' INTENSITY	
HAZARD EXPOSURE	WATERWAY CONDITION	RECOVERY POTENTIAL	COMBINED COLOUR	
250	0	250	MAGENTA	
Management Strategy #	7: Gamecha	nger Investment		
Strategy Aims:	To use a w	To use a waterway hazard to fulfil a community or ecological need.		
Qualifying Criteria:	Sites need	Sites need to produce a suitable form of waterway hazard,		
	There nee	There needs to be a mechanism to convert this hazard into a		
	useful pro	useful product,		
	There mu	There must also be a particular demand for the product close by.		
Site Profile:	"Turning T	"Turning Trash into Treasure"		
Examples:	Redbank	Redbank Plains Recreational Reserve, Jim Donald Park.		
How to invest:	Redirect c	Redirect offset investment here.		
Policy Setting:	Specify ga	Specify game-changing technology in development guidelines.		
Remedy:	"Potion"	"Potion"		

Potions - Transform a hazard into a benefit

The perfect example of a gamechanger investment is stormwater harvesting, as it converts a hazard (i.e. too much high nutrient water) into a **need** (i.e. it, it provides alternative water supply). A good source of funding is via offsets (transfusions); this will enable transfer of resources and effort to where it can make the biggest impact.


Gamechanger investment is aligned with the 'Circular Economy' principle, which turns a waste product into a resource. This mimics a natural system where the waste products (i.e. fallen trees) are decomposed and become the fertiliser that helps the next generation of plants establish.

Case Study - Redbank Plains Recreational Reserve, Ipswich

Ipswich City Council had issues with downstream flooding near the Redbank Plains Recreational Reserve. To solve the issue, a combined stormwater detention and stormwater harvesting wetland was constructed within the recreational reserve.

This infrastructure converted a threat into a reliable irrigation supply for the local sports fields, which subsequently saves the council thousands each year.

waterbydesign.com.au/case-study/redbank-plains-recreational-reserve-wetland

Redbank Plains Recreation Reserve Integrated stormwater treatment, detention, harvest and reuse (Photo: ICC)

'R' INTENSITY	'G' INTENSITY	'B' INTENSITY	'RGB' INTENSITY	
HAZARD EXPOSURE	WATERWAY CONDITION	RECOVERY POTENTIAL	COMBINED COLOUR	
100	100	100	GRAY	
Management Strategy	#8: Strategic	Offsets		
Strategy Aims:	To redirec	To redirect finance to areas where they will have a much		
	bigger im	bigger impact.		
Qualifying Criteria: The donor site should not c			to a high value waterway,	
	It should b	It should be relatively stable (i.e. established urban areas),		
	Adjacent	Adjacent waterways should have limited prospects for future recovery		
	WSUD pro	WSUD projects would have higher than average infrastructure cost		
	or a high ı	or a high missed opportunity cost.		
Site Profile:	"The Unde	"The Underperformer"		
Examples:	Infill deve	Infill development in the Lower Norman Creek and Kedron Brook		
	catchmen	ts.		
How to invest:	Local Gov	Local Government to actively collect funds from here to		
	reinvest e	reinvest elsewhere.		
Policy Setting:	Strategic	Strategic plan to identify area as offset zone.		
Minimum onsite controls for litter			still apply.	
Remedy:	"Transfusio	"Transfusion"		

Transfusions - Transfer investment to create value

Much like blood transfusions, the transfer of resources from a low value creek to a high needs creek can maximise the impact of the investment. While the transfer will 'weaken' the 'donor' creek, the high needs creek will gain significantly.

Ideally offsets can be taken from sites where there is: Limited benefit to a local waterway (e.g. outfall direct to ocean, highly disturbed ecosystems, concrete channels, underground pipes)

Higher than average infrastructure cost to provide stormwater treatment infrastructure (e.g. due to underground services, land slope, retaining walls, high maintenance needs).

High missed opportunity cost where another project on the same site would create a much bigger return on investment. (Funds from commercial land in the CBD could contribute to a larger impact outside the CBD).

'R' INTENSITY	'G' INTENSITY	'B' INTENSITY	'RGB' INTENSITY		
HAZARD EXPOSURE	WATERWAY CONDITION	RECOVERY POTENTIAL	COMBINED COLOUR		
50	50	50	CHARCOAL		
Management Strategy	/ #9: Minimum	Investment			
Strategy Aims:	ategy Aims: To provide just the minimum amount of investment		of investment to:		
	Prevent pu	Prevent public safety risks and contain threats,			
	Maintain t	Maintain thresholds and avoid total sterilization of the waterway,			
	To sew "se	To sew "seeds of change".			
Qualifying Criteria:	Every wate	Every waterway should have a minimum amount of funding			
	available t	o avert emergencies.			
Site Profile:	"Left to the	"Left to their own devices"			
Examples:	Parts of the	Parts of the Bremmer, Oxley, Logan and Brisbane Rivers			
How to invest: Minim		Ainimum investment to sustain life only.			
	Local Gov	Local Government can collect funds from these catchments			
	to reinvest	to reinvest elsewhere.			
Policy Setting:	Sites ident	Sites identified via strategic planning.			
Remedy:	"Vitamins"	"Vitamins"			

Vitamins - Minimum required investment

Vitamins represent the minimum required investment in any given waterway. Their purpose is to address key safety issues and waterway health deficiencies.

Actions could include:

Public safety issues to prevent risk to human life (e.g. culvert blockage, flood risk, e coli outbreak)

Containment of threats to prevent their spread into high value areas (e.g. weeds and invasive species, rapid 'head cut' scour in creeks)

Seeds of change - low cost measures that can have long-term positive impacts (eg. education)

WATERWAY TREATMENT PLAN

POISON

POISON REDUCTION VACCINE CATALYST ELIXIR GAMECHANGER

CATCHMENT CLEARING

catchment clearing street tree quotas do not permit development ecodevelopment demolish and re-wild urban forest / green roofs

EROSION

cover control sediment basins no cut/fill housing industry R&D into ESC soil conservation education programs sediment harvest and reuse (e.g. lakes)

POLLUTION

pollution reduction programs (e.g fines) stormwater treatment (e.g. bioretention) source control; ban plastic etc passive irrigation of street trees and lawns behaviour change programs nutrient harvest and reuse (e.g. SWH)

ENVIRONMENT

NATER

RIPARIAN CLEARING POISON POISON REDUCTION reduce / slow riparian clearing set min riparian buffers VACCINE do not permit clearing CATALYST link waterway to conservation areas ELIXIR riparian restoration GAMECHANGER empower community habitat groups

DISTURBANCE reduce disturbance (e.g. feral animals) repair disturbance fence riparian areas facilitated access points restore waterway eco-tourism to fund eco repair

WEEDS

weed eradication programs regular maintenance source control and quarantine biological control programs riparian replanting use weeds as pioneer plants or fertiliser

POISON		
POISON REDUCTION		
ANTIDOTE		
VACCINE		
CATALYST		
ELIXIR		
GAMECHANGER		

.....

HAZARDS reduce safety hazards fencing and softfall safety in design work & play safe education retrofit safer environments

"safe risk" teaching

SAFETY

POOR **AESTHETICS** reduce ugliness (e.g graffiti) set min aesthetic standard ensure architects deliver design initiate gentrification subsidise beautification

NO GREEN SPACE

reduce concrete jungle set min green space quota biophilic design combine PoS with redevelopment resumption and park creation verge community gardens/parklets

POISON

WATERWAY BENEFIT NOT SHARED EQUALITY

POISON REDUCTION VACCINE CATALYST ELIXIR GAMECHANGER

reduce inequality (e.g. only private access) regulate public access neighbourhood diversification affirmative action value redistribution neighbourhood commons

HIGH COST TO BENEFIT RATIO

street art (e.g. Melbourne laneways)

reduce WSUD costs (relax standards) build WSUD only to economic constraints lotscale and at source WSUD industry R&D (min cost + max benefit) government to subsidise WSUD strategic offsets to maximise ROI

HIGH MAINTENANCE COST reduce level of service design for maintenance

self sustaining natural systems proactive maintenance / capacity building maintenance funded by SW levy community stewardship

ROI = return on investment SW = stormwater SWH = stormwater harvest TBL = triple bottom line WSUD = water sensitive urban design n/a = not applicable CCTV = security monitoring CPTED = crime prevention through environmental design PoS = public open space R&D = research and development

FLOW INCREASE

reduce flow increase (SW detention) rainwater tanks net zero (flow) stormwater harvest and reuse retrofit flood mitigation stormwater harvest and reuse

IMPERVIOUS AREA

regulate impervious area infiltration systems permeable development rainwater harvesting retrofit urban infiltration aquifer storage and recovery

HABITAT REMOVAL

FLOODING reduce flood risk (e.g. levees)

FISH BARRIERS

reduce and remove fish barriers

design fish friendly crossings

install fishways upon culvert renewal

retrofit fish ladders + fish restocking

combine fish ladders with infrastructure upgrades

stormwater detention flood friendly development catchment reforestation preservation and restoration of wetlands resilient housing / house boats

EXOTIC FISH

reduce exotic fish sources (quarantine) eradication reinstate native friendly habitat reinstate fish passage, flushing fish restocking carp as pet food / fertiliser regulate habitat (i.e snags) removal permit habitat offsets ban habitat removal and educate link waterway to conservation areas habitat reinstatement land for wildlife

UNFRIENDLY WATERWAY CORRIDORS

reduce crime (e.g. CCTV, neighbourhood watch) design with CPTED standards design for community interaction community engagement with redevelopment community building programs co-design redevelopment

NO ACCESS OR INTERACTION WITH WATERWAY

reduce fencing designate public access points designate public commons combine PoS with redevelopment construct new river walkways discovery trails

APATHY ABOUT WATERWAY

sustainable aquaculture

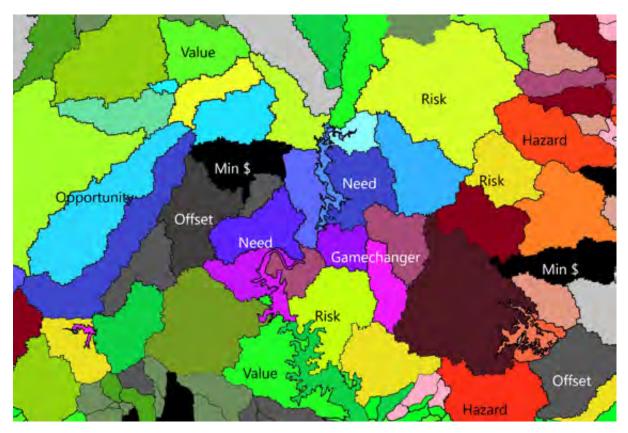
target negative attidudes (e.g. dumping rubbish) environmental education engage with existing env. stewards community grants / co-design projects community spirit festivals e.g. riverfire nature play

SHORT ASSET LIFE

reduce non-durable materials set design life standards flexible, adaptable, resilient design industry R&D to extend design life asset management and renewal plans natural self sustaining systems

NON-SUSTAINABLE MATERIALS

reduce catchment toxicity treat and contain toxic materials eco-design standards community education and incentives retrofit houses with waterwise items use circular economy approach


MISSED OPPORTUNITY COST

broaden focus of WSUD cost benefit analysis / offsets <u>use living waterways approach</u> catalyst redevelopment projects subsidise investment to improve site value <u>holistic design funded by SW levy</u>

Step 4 | Waterway Prioritisation and Triage

Once a waterway assessment has been undertaken, each sub-catchment can be assigned a colour and strategy depending on its combined 'RGB' score (Step 2) and a treatment strategy can then be assigned. This helps waterway managers build a picture of overall waterway health, enabling them to interpret a single GIS layer and identify high priority areas.

Waterway management is unlikely to have enough funding to cover every project identified in this process. It will therefore be necessary to prioritise actions (Step 4) in order to gain the biggest ecological (and social) return on investment.

Figure 1 - Example: GIS Mapping Using Strategic Waterways

Selecting Winning Projects

The Queensland Environmental Protection (Water) Policy (EPP) (DES 2009) has two key objectives:

- 1. Protect Waterway Values
- 2. Enhance Waterway Values

The Strategic Waterways Tool can help waterway managers efficiently protect and enhance waterway values by following the 'rules' described in the table below.

These rules form an algorithm for determining high priority waterway projects.

Table 1 - Rules for optimising waterway value

OBJECTIVE # 1	PROTECT WATERWAY VALUES
How? Protect Green Score	Which Strategies? Maintain Green, Reduce Red Score, Reduce Yellow Score
Strategy? 1&2. Green Zones (Maintain Value Score)	Why? It is cheaper to protect existing ecosystems than to build new ones. Once a species is extinct it is irreversible
3. Red Zones (Reduce Hazard Score)	Limiting Hazard creation (e.g. pollution source control) is the most effective way to manage risks and limit damage to a value
4. Yellow Zones (Protect Green from Red)	Identify key risk 'hot spots' and prevent existing Green Zones from being degraded by Red Zones
OBJECTIVE # 2	ENHANCE WATERWAY VALUES
How? Enhance Green Score	Which Strategies? Convert Cyan, Blue or Magenta into Green zones
-	-
Enhance Green Score Strategy? 5. Cyan Zones	Convert Cyan, Blue or Magenta into Green zones Why? Identify key 'cold spots' or reconnection opportunities and transition them from Cyan to Green. Catalyst projects harness natural resilience and have a

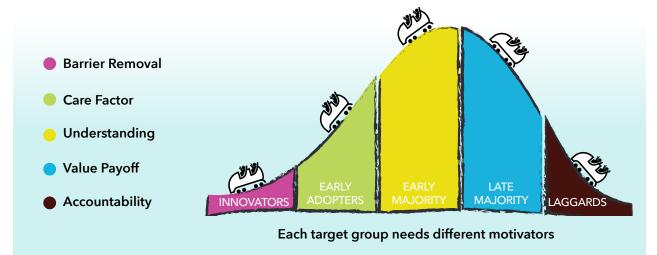
Strategic Waterways aims to achieve the above objectives while maximising the net ecological, social and economic return on investment. This allows us to stretch environmental funding further and create more impact in the catchment.

Step 5 | Monitoring of strategy effectiveness

One of the leading reasons quoted for the 'failure' of Water Sensitive Urban Designs is the breakdown of the project implementation chain. That is the effectiveness of the chosen risk mitigation strategy is diluted due to poor planning, design, construction compliance and/or asset maintenance. If one link in the chain is broken then it could lead to complete project failure.

The Project Implementation Chain:

This is important to recognise, as the same issue could occur to any of the nine potential value management strategies. If projects are poorly executed than the ecological return on investment will be reduced.


How can we measure potential project uptake and delivery effectiveness? Strategic Waterways assumes different sectors of the development industry respond to different incentives, penalties and motivators, which leads to a variety of project outcomes (ranging from full adoption and perfect execution of WSUD through to poor adoption and incomplete execution of WSUD).

These sectors can be characterised by different stages in Rogers Adoption Curve (below). This concept has been applied to associate a key motivator for each sector, as illustrated on Page 41.

Why do people still pollute? > What can we do?

Don't care >		Promote reconnection to nature	
Don't know better >		Provide more education programs	
Don't have time/opportunity >		Better environmental/urban design	
Don't have the money	>	Provide incentives/polluter pays	
lt's not illegal	>	More regulation/enforcement	

Key motivators relating to each segment of the stormwater Industry

For example, engineers within the 'late majority' category are most likely to respond to the 'value payoff' motivator, which means they need to see the clear economic benefits before they pursue a strategy. Similarly, it can be assumed those in the 'laggard' category will only respond to penalties and accountability.

To use the Strategy Effectiveness Tool, waterway managers answer a simple questionaire to test how a potential strategy will perform for each market sector across the different phases of a project. This can be helpful for waterway managers to re-evaluate a strategy deemed unviable due to administration challenges.

Visualising strategy effectiveness

The properties of colour can again be utilised to measure the potential success of project. The score from the implementation questionaire can be converted to an opaqueness percentage. For example, if a project faces significant administrative challenges and has a lower score, the colour will be less opaque. Therefore, a higher opaqueness percentage indicates the higher potential success in converting financial investment into ecological gain.

min strategy	median strategy	max strategy
effectiveness	effectiveness	effectiveness
(0%)	(50%)	(100%)

This tool is useful in evaluating new technology and strategies so managers can assess the likelihood of success compared to a more conventional approach.

Monitoring and adaptive management

Waterway managers need to review catchment strategies regularly to measure progress, impact and growth in the RGB score. This allows for timely optimisation and adjustment to ensure sustained return on investment.

Limitations of the tool

Strategic Waterways is a high level tool that can help waterway managers visualise risks and opportunities within their catchment and help them to decide spending priorities. Most project sites will be a combination of mid-range scores, resulting in a dull grey that requires a diverse range of strategies.

Ground-truthing is also needed to establish the viability of a project. If waterways cross local government boundaries or mixed land tenure exists, it may reduce the chances that an identified hotspot can be acted upon. Managers can begin to explore these issues using the implementation questionaire.

In summary

With environmental budgets declining and waterway issues increasing, it is imperative that we maximise return on investment in waterway projects. This warrants an innovative, new approach that challenges traditional methods of treatment.

Strategic Waterways, developed by Water by Design, uses the properties of colour to help assess and diagnose waterway condition. The tool will enable waterway managers to interpret a single GIS layer and quickly identify hotspot areas (key risks are identified by bright yellow zones) and/or cold spots (key opportunities identified by bright cyan zones).

This tool benefits managers and waterways by simplifying complex interactions between hazards, values and needs. It allows managers to prioritise and optimise their portfolio of catchment management projects. This revolutionary system is adaptable, efficient and paves a way forward in ecological, financial and social waterway sustainability.

Version 1, November 2019 Creative Commons License 4.0 © Healthy Land and Water 2019 ISBN xxx-x-xx-x info@hlw.org.au download from waterbydesign.com.au

Acknowledgements

The Strategic Waterways User Guide could not have been produced without the ongoing funding of the Water by Design program by the State Government's Department of Environment and Science. Graphic design, layout and proofing provided by Evolve Marketing. This document was authored by Glenn Browning and reviewed by Adrian Crocetti, Paul Maxwell and Michael Gleeson. Part of the content for this document was based on the following papers:

- Browning G.D., "Let's Get Our Priorities Straight" WIT Transactions on Ecology and the Environment, Vol 228 WIT Press, 2018, ISSN 1743 3541
- Browning G.D., "Let's Get Our Ducks in a Row: Novel tools for Waterway Prioritisation" International Journal of Environmental Impacts, Vol 2 WIT Press, 2019
- Browning G.D., "50 Shades of Risk: A tool to analyse and prioritise complex waterway management" World Engineering Conference, Melbourne 2019

Disclaimer

The material contained in this publication is produced for general information only. It is not intended as professional advice on specific applications. It is the responsibility of the user to determine the suitability and appropriateness of the material contained in this publication to specific applications. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific independent professional advice. Healthy Land and Water expressly disclaim any and all liability to any person in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The information contained in this publication does not necessarily represent the views of Healthy Land and Water and its network.

Healthy Land and Water

Healthy Land and Water is an independent organisation dedicated to improving and protecting South East Queensland's environment. As experts in research, monitoring, evaluation and project management, we deliver innovative and science-based solutions to challenges affecting our landscapes, waterways and biodiversity.

Our Water by Design initiative was established in 2005 and builds the capacity of the water and urban development sectors to help successfully implement sustainable cities through better urban water management. Find out more at www.waterbydesign.com.au

For further information on this guideline or other projects, or to provide feedback, please email info@hlw.org.au or telephone (07) 3177 9100.

Photo credits: Photography sourced from Healthy Land and Water archives and stock photos. Additional photos supplied by: Ocean Protect (GPT), Brick 'n' Pave (permeable paving), DesignFlow (managed waterbody), E2DesignIab (wicking lawn), Ideanthro (buffer strip), Catchment Solutions (fishway) and Landscapology (recreation). Strategic Waterways is a new guideline and tool to help waterway managers to assess and prioritise actions across the catchment. It takes a fresh look at the hazards damaging waterway health and strategies to manage our water values.

It's unique colour-coding and scoring system means it is easy to:

- visualise waterway hazards, values and needs;
- diagnose what type of action is needed most;
- decide which sites are highest priority; and
- keep track of restoration progress for each section of waterway.

For a new perspective on ecological risk management, explore the Strategic Waterways tool at: www.waterbydesign.com.au/news/strategic-waterways www.waterbydesign.com.au/news/strategic-waterways www.waterbydesign.com.au/news/strategic-waterways

For other products by Water by Design go to <u>www.waterbydesign.com.au/resources</u>

the fish are getting very angry with us at the amount of rubbish and pollution that is washing into their home. Learn how we can stop the flow of nasty pollutants and protect our fishy friends

Level 19, 160 Ann St, Brisbane QLD 4000 Australia PO Box 13204, George St. Brisbane QLD 4003 Australia

www.waterbydesign.com.au | www.hlw.org.au